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Objective: The objective of this study is to evaluate the validity of an under-mattress monitoring device
(Fullpower Technologies) in estimating sleep continuity and architecture, as well as estimating
obstructive sleep apnea in an adult population.
Methods: Adult volunteers (n¼102, 55% male and 45% female, aged 40.6 ± 13.7 years with a mean body
mass index of 26.8 ± 5.8 kg/m2) each participated in a one-night unattended in-lab study conducted by
Fullpower Technologies. Each participant slept on a queen-sized bed with Sleeptracker-AI Monitor
sensors placed underneath the mattress. Standard polysomnography (PSG) was simultaneously recorded
on the same night. Researchers (FD and CK) were provided de-identified sleep studies and datasets by
Fullpower Technologies for analysis. Sleep continuity measures, 30-s epoch-by-epoch sleep stages, and
apnea and hypopnea events estimated by an automated algorithm from the Sleeptracker-AI Monitor
were compared with the PSG recordings, with the PSG recordings serving as the reference.
Results: Overall, the Sleeptracker-AI Monitor estimated similar sleep continuity measures compared with
PSG. The Sleeptracker-AI Monitor overestimated total sleep time (TST) by an average of 6.3 min and
underestimated wake after sleep onset (WASO) by 10.2 min. Sleep efficiency (SE) was similar between
the Sleeptracker-AI Monitor and PSG (87.6% and 86.3%, respectively). The epoch-by-epoch accuracy of
Sleeptracker-AI Monitor to distinguish 4-stage sleep (wake, light, deep, and REM sleep) was 79.0% (95%
CI: 77.8%, 80.2%) with a Cohen's kappa of 0.676 (95% CI: 0.656, 0.697). Thirty-five participants (34.3%)
were diagnosed with obstructive sleep apnea (OSA) with an apnea-hypopnea index (AHI) � 5 based on
PSG. Accuracy, sensitivity, and specificity for the Sleeptracker-AI Monitor to estimate OSA (an AHI �5)
were 87.3% (95% CI: 80.8%, 93.7%), 85.7% (95% CI: 74.1%, 97.3%), and 88.1% (95% CI: 80.3%, 95.8%)
respectively. The positive likelihood ratio (LRþ) for AHI �5 was 7.18 (95% CI: 3.69, 14.0), and the negative
likelihood ratio (LR-) for AHI �5 was 0.16 (95% CI: 0.072, 0.368).
Conclusion: The Sleeptracker-AI Monitor had high accuracy, sensitivity, and specificity in estimating
sleep continuity measures and sleep architecture, as well as in estimating apnea and hypopnea events.
These findings indicate that Sleeptracker-AI Monitor is a valid device to monitor sleep quantity and
quality among adults. Sleeptracker-AI Monitor may also be a reliable complementary tool to PSG for OSA
screening in clinical practice.
© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
ne, Stanford University, 450

r B.V. This is an open access article
1. Introduction

Rapid advances in technology have led to unprecedented
changes in every aspect of our life. Various user-friendly devices
and apps have been developed for self-tracking and assessing an
individual's fitness, sleep, and health. Consumer home devices have
gained rising popularity among the general population for sleep
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/
mailto:clete@stanford.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sleep.2022.04.010&domain=pdf
www.sciencedirect.com/science/journal/13899457
www.elsevier.com/locate/sleep
https://doi.org/10.1016/j.sleep.2022.04.010
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.sleep.2022.04.010
https://doi.org/10.1016/j.sleep.2022.04.010


F. Ding, A. Cotton-Clay, L. Fava et al. Sleep Medicine 96 (2022) 20e27
monitoring [1]. These devices are accessible, easy-to-use, non-
obtrusive, and available for longitudinal monitoring. Yet most
currently available home sleep monitoring devices lack validation.
The American Academy of Sleep Medicine (AASM), in their position
statement about consumer sleep technology, highlights the need
for validation of these devices against PSG, and for FDA approval
before they can be used in clinical applications [2].

The Sleeptracker-AI Monitor (Fullpower Technologies, Califor-
nia, USA) is a commercially available, unobtrusive and non-
wearable home sleep monitoring device. It is either pre-installed
under a mattress or can be purchased separately by consumers.
The device uses piezo-electric sensors that register the forces
exerted through the mattress by features such as the subject's
motion, respiration, heartbeats, and snoring vibrations. The goal of
this study is to evaluate and validate the performance of the
Sleeptracker-AI Monitor in assessing sleep continuity and archi-
tecture, as well as estimating obstructive sleep apnea (OSA).

2. Materials and methods

2.1. Participants

One hundred and two adult volunteers were recruited through
online advertisement, followed by a phone call screening to assess
their willingness and ability to complete an unattended in-lab
study (sole inclusion criterion) with the only exclusion criterion
of weight above 400 lbs. All potential participants gave their
written informed consent to Fullpower Technologies to participate
in the study. The study was conducted in agreement with the
Declaration of Helsinki requirements [3]. All participants received a
$50 gift card for their participation. Subject recruitment and data
collection took place between Jul. 2019 and Mar. 2020. Researchers
(FD and CK) participated in the study following data collection, and
were provided de-identified sleep studies and datasets by Full-
power Technologies for analysis. The protocol for review and
analysis of these de-identified sleep studies and datasets was
submitted to the Stanford University Institutional Review Board
(IRB) Research Compliance Office; the IRB determined that this
protocol did not need IRB approval since it did not involve human
subjects as defined in 45 CFR 46.102(f) or 21 CFR 50.3(g).

2.2. Measurements

2.2.1. PSG recordings
Data from in-lab nocturnal PSG (Philips Respironics ALICE 6

LDXs System) and Sleeptracker-AI Monitors were simultaneously
collected from each participant in a Fullpower Technologies sleep
research laboratory. A standard PSG montage was used, which
included a 5-channel electroencephalography (EEG; F3/M2, F4/M1,
C3/M2, O1/M2, O2/M1), bilateral electro-oculography (EOG), and
chin electromyography (EMG). Respiratory parameters were ob-
tained from an oronasal thermal airflow sensor, dual thor-
acoabdominal belts, and pulse oximetry. All electrodes were placed
by Registered Polysomnographic Technologists (RPSGTs). Video
recordings were conducted to assess nocturnal events.

PSG recordings were manually scored in 30-sec epochs ac-
cording to the AASM scoring manual Version 2.5 [4] by an experi-
enced RPSGT. The RPSGT was blinded to the Sleeptracker-AI
Monitor data when scoring PSG data. PSG scoring was further
independently verified by one of the study authors (CK), who is a
board-certified sleep specialist; the PSGs provided to him for re-
view were deidentified.

2.2.2. Sleeptracker-AI Monitor recordings
One Sleeptracker-AI Monitor setup consists of two sensors,
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one for each side of the bed, placed between the mattress and
foundation and connected to one processing unit. For the study,
five Sleeptracker-AI Monitors, with independent predictions,
were set up in parallel to evaluate the sensitivity to sensor
location, with sensors placed in parallel on both sides of a queen-
size bed underneath the mattress (Fig. 1A). The sensor is 5.77
inches long, 3.04 inches wide, and 0.6 inches thick (Fig. 1B). Each
sensor captured physical forces exerted through the mattress by
the sleeper. These include: (1) body movements; (2) respiratory
efforts through the forces of the chest and abdomen on the
mattress; (3) heartbeats as a ballistocardiographic signal riding
on top of the preceding signals; and (4) snoring by vibration
transferred through the mattress. These signals were then pro-
cessed via an automated algorithm that consists of signal pro-
cessing, machine and deep learning models, and statistical
inference techniques to separate these effects and produce the
following estimates: (1) whether the bed is occupied; (2) when
the bed is occupied, estimation of sleep vs wake; (3) when
sleeping, estimation of light (N1þN2) vs deep (N3) vs REM sleep;
and (4) estimation of apnea or hypopnea events. The algorithm
has access, through these forces, to time series of motion,
breathing, heartbeats, and snoring, and thus to amplitudes and
frequencies of and variation in each parameter.

The parallel sensors (one on each side of the bed) were con-
nected to one of the 5 Sleeptracker-AI processors, namely TB-5, PA-
1, PA-2, PB-3, and PB-4 (Fig. 1A). Each Sleeptracker-AI processor
produced independent sleep recordings with estimations. These
sleep recordings were automatically generated and did not depend
on lights-out or lights-on indicators.

2.3. Data processing

PSG lights-out and lights-on timewere treated as recording start
and end time respectively for both the Sleeptracker-AI Monitor and
PSG during analysis. Participants turned out their lights at their
habitual bedtime. Times when the participant was out of the bed
and/or the PSG unit was unplugged were excluded from the anal-
ysis for both the Sleeptracker-AI Monitor and PSG (totaling 1.0% of
epochs). Both the Sleeptracker-AI Monitor and PSG produced esti-
mates of wakefulness or sleep stage of each 30-s epoch. Time
stamps were used to synchronize epoch-to-epoch data between
the Sleeptracker-AI Monitor and PSG, as much as possible within
15 s.

2.4. Statistical analyses

Data from each processor, each corresponding to two parallel
sensors were independently analyzed. Results from sensors at the
PB-3 location were presented for the primary results, as PB-3 is the
preferred location for sensor placement per setup instructions.
Performance of sensors at other locations were also analyzed, and
the results are included in the Appendix.

Means and standard deviations were calculated for all sleep
continuity measures, including total sleep time (TST), sleep onset
latency (SOL), and wake after sleep onset (WASO) that were pro-
vided by the Sleeptracker-AI Monitor and PSG. Pearson correlations
were calculated to assess the strength of associations of continuous
measures between the Sleeptracker-AI Monitor and PSG. Agree-
ment between the Sleeptracker-AI Monitor and PSG was estimated
according to Bland-Altman plots. Similar to others [5e7], we
defined as satisfactory an a priori difference between the
Sleeptracker-AI Monitor and PSG �30 min for total sleep time (TST)
and wake after sleep onset (WASO), and <5% for sleep efficiency
(SE).

For sleep stage measures, epoch-by-epoch comparison



Fig. 1. One Sleeptracker-AI Monitor setup consists of two Sleeptracker-AI Monitor sensors placed between the mattress and foundation, each connected to one Sleeptracker-AI
Monitor processing unit.
A) Sleeptracker-AI Monitor sensor positions tested. Each position corresponds to an independent Sleeptracker-AI Monitor, with independent predictions. TB-5: top, sensor B,
processor 5; PA1-1: under-pillow, sensor A, processor 1; PA-2: under-pillow, sensor A, processor 2; PB-3: under-pillow sensor B, processor 3 (default); PB-4: under-pillow sensor B,
processor 4.
B) Dimensions of Sleeptracker-AI Monitor.

Table 1
Demographic characteristics of 102 participants.

Characteristic Mean ± SD (range), or n (%)

Age, years 40.6 ± 13.7 (range 18e72)
Male/Female 55 (53.9%)/47 (46.1%)
BMI, kg/m2 26.8 ± 5.8 (range 17.7e44.6)
BMI <25 50 (49.0%)
25 � BMI <30 28 (27.5%)
BMI �30 24 (23.5%)

AHI 6.7 ± 12.3 (range 0.0e75.6)
Any OSA (AHI �5) 35 (34.3%)
Moderate-Severe OSA (AHI �15) 11 (10.8%)

BMI: Body Mass Index.
AHI: Apnea-Hypopnea Index.
OSA: Obstructive Sleep Apnea.
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between the Sleeptracker-AI Monitor and PSG was performed to
calculate sensitivity, specificity and accuracy. The bootstrap
resampling method, treating each subject's data as a single unit
for resampling purposes, was used to estimate the 95% confi-
dence interval of sensitivity and specificity [8]. Sensitivity is
defined as the probability of the Sleeptracker-AI Monitor to
positively identify a sleep stage when it is present on PSG.
Specificity is defined as the probability of the Sleeptracker-AI
Monitor to negatively identify a sleep stage when a sleep stage
is not present on PSG. The accuracy represents the percentage of
epochs with the same judgement between the Sleeptracker-AI
Monitor and PSG. Cohen's kappa was calculated, which mea-
sures the agreement between two methods beyond what would
be expected from chance alone. A kappa value of 0e0.2 is
considered essentially no agreement, 0.2e0.4 low agreement,
0.4e0.6 moderate agreement, 0.6e0.8 high agreement, and
0.8e1.0 nearly perfect agreement [9].

For the apnea-hypopnea index (AHI), means and standard de-
viations were calculated. Paired t-tests were used for comparison.
Sensitivity, specificity, and accuracy were calculated for the esti-
mation of obstructive sleep apnea, corresponding to an AHI �5. P
values less than 0.05 were considered statistically significant. Sta-
tistical analyses were performed using Python (Python Software
Foundation, version 3.8.3).
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3. Results

Demographic characteristics of all participants are presented in
Table 1.

Table 2 summarizes sleep continuity measures and mean time
spent in each sleep stage. Overall, the Sleeptracker-AI Monitor
estimated similar estimates for sleep continuity compared with
PSG. The Sleeptracker-AI Monitor overestimated TST by an average



Table 2
Means and correlation of sleep parameters between Sleeptracker-AI Monitor and polysomnography in 102 participants.

Sleep parameters Sleeptracker-AI PSG Correlation coefficient (Rho)

Mean (SD) Range Mean (SD) Range

TST, min 423.9 (83.3) 172.0, 679.0 417.6 (85.2) 150.0, 690.5 0.96**
SOL, min 15.6 (27.0) 0, 205.5 11.6 (11.6) 0, 55.0 0.34*
WASO, min 46.2 (37.0) 5.5, 211.0 56.4 (50.3) 7.0, 294.5 0.88**
SE, % 87.6 (8.7) 55.4, 98.4 86.3 (9.7) 52.1, 97.2 0.87**
Light, min 265.5 (62.2) 124.0, 465.5 241.6 (63.7) 64.5, 445.5 0.84**
Deep, min 62.8 (23.0) 4.5, 119.5 75.2 (32.5) 5.0, 173.0 0.61**
REM, min 96.3 (30.6) 30.0, 170.5 100.8 (39.6) 26.0, 223.0 0.76**

TST: total sleep time; SOL: sleep onset latency; WASO: wake after sleep onset; SE: sleep efficiency; REM sleep: rapid eye movement sleep.
**p value < 0.0001.
*p value < 0.05.
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of 6.3 min and underestimated WASO by 10.2 min. The
Sleeptracker-AI Monitor overestimated light sleep by 23.9 min and
underestimated deep sleep by 12.4 min. However, all the mean
differences between the Sleeptracker-AI Monitor and PSG statistics
fell within an a priori established satisfactory range described
above. Agreement for TST, SE, SOL and WASO are shown in Bland-
Altman plots (Fig. 2). Correlations are high across all sleep param-
eters except SOL, which may be due to some large amplitude errors
in this parameter which has a smaller scale (lower mean in mi-
nutes) than the other parameters considered.

Table 3 provides epoch-by-epoch classification performance of
the Sleeptracker-AI Monitor against PSG within each sleep stage.
Fig. 2. Bland-Altman plots for total sleep time (TST), sleep efficiency (SE), sleep onset laten
polysomnography (PSG). Mean (bias) of the differences between the Sleeptracker-AI Monit
standard deviations) are displayed for each Bland-Altman plot.
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For the 4-class classification to distinguish wake, light, deep and
REM sleep, the Sleeptracker-AI Monitor achieved an accuracy of
79.0% with a Cohen's kappa of 0.676. For 3-class classification to
distinguish wake, non-REM (NREM), and REM sleep, the accuracy
was 86.6% with a Cohen's kappa of 0.733. For 2-class classification,
the agreement was high across all sleep stages, with each stage-
specific Cohen's kappa ranging between 0.601 and 0.772. Sensi-
tivity and specificity were high across all stages. The sensitivity for
detecting deep sleep was slightly lower compared to other sleep
stages. See Fig. 3 for example hypnograms comparing the estimated
staging from Sleeptracker-AI Monitor to PSG.

Table 4 shows the stage-by-stage cross tabulation of
cy (SOL), and wake after sleep onset (WASO) recorded by Sleeptracker-AI Monitor and
or and PSG outcome, and lower and upper agreement limits (mean difference ± 1.96



Table 3
Epoch-by-epoch agreement, sensitivity and specificity between Sleeptracker-AI Monitor and polysomnography in 102 participants.

Sleep stage Accuracy (95% CI), % k (95% CI) Sensitivity (95% CI), % Specificity (95% CI), %

Multiple classes
Wake/N1þN2/N3/REM 79.0 (77.8, 80.2) 0.676 (0.656, 0.697) n/a n/a
Wake/NREM/REM 86.6 (85.4, 87.7) 0.733 (0.706, 0.756) n/a n/a
Single class detection
Wake 93.3 (92.4, 94.1) 0.709 (0.672, 0.743) 71.3 (66.8, 75.7) 96.8 (96.1, 97.4)
Light 80.1(78.8, 81.2) 0.601 (0.576, 0.625) 84.8 (83.6, 86.2) 75.3 (72.9, 77.2)
Deep 92.0 (91.3, 92.7) 0.673 (0.644, 0.702) 65.6 (62.1, 68.9) 96.9 (96.3, 97.4)
REM 92.6 (91.6, 93.5) 0.772 (0.743, 0.800) 80.0 (76.5, 83.3) 95.9 (95.2, 96.5)

Fig. 3. Hypnograms and apnea/hypopnea events from PSG and Sleeptracker for three recordings, selected based on four-class per-epoch sleep staging accuracy: median (top), lower
quartile (bottom left), upper quartile (bottom right). (Note that EXCLUDED includes unplugged status for PSG and off-bed status for Sleeptracker, as discussed.)
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Sleeptracker-AI Monitor compared with PSG. The per-stage sensi-
tivities appear along the diagonal. The Sleeptracker-AI Monitor
tends to misidentify PSG N3 as light sleep (33.6% of PSG N3 epochs)
and also misidentified 23.4% of wake epochs as light sleep. In
contrast, there were very few errors misclassifying deep sleep as
REM or vice-versa. This tendency for most of the errors to be
24
misclassified between light sleep and another stage may be due to
the fact that light sleep is the most prevalent stage and also that
most transitions are between light sleep and another sleep stage, so
errors in locating transitions cause errors of this type.

There are 35 participants (34.3%) found to have an AHI�5 based
on PSG recordings. Mean AHI based on the Sleeptracker-AI Monitor



Table 4
Stage by stage cross tabulation of Sleeptracker-AI Monitor compared with polysomnography.

Sleeptracker-AI PSG

Wake Light Deep REM

Dichotomized accuracya, % 93.3 80.1 92.0 92.6

Cross Tabulationb, % Wake 71.32 4.87 0.71 0.92
Light 23.42 84.92 33.59 19.04
Deep 1.48 4.84 65.56 0.05
REM 3.79 5.37 0.14 79.99

a Dichotomized % accuracy is the percentage of epochs where both the Sleeptracker-AI Monitor and PSG rate the stage as present or where both the Sleeptracker-AI Monitor
and PSG rate the stage as not present.

b Cross Tabulation provides the percentage of epochs of each stage rated by the Sleeptracker-AI Monitor when PSG rated a given stage.
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and PSG were 7.9 ± 14.1 and 6.7 ± 12.3 respectively, with a paired t-
test p-value of 0.057. Central apnea events were minimal based on
PSG. Accuracy, sensitivity, and specificity for the Sleeptracker-AI
Monitor to estimate OSA (an AHI �5) were 87.3% (95% CI: 80.8%,
93.7%), 85.7% (95% CI: 74.1%, 97.3%), and 88.1% (95% CI: 80.3%, 95.8%)
respectively (Table 5). The positive likelihood ratio (LRþ) for AHI�5
was 7.18 (95% CI: 3.69, 14.0). There were 11 participants (10.8%)
with AHI�15 based on PSG recordings. Statistics on Sleeptracker-AI
Monitor's estimation of moderate-to-severe OSA (AHI �15) are
shown in Table 5. See also Fig. 4 for a comparison of Sleeptracker-AI
Monitor estimated AHI values to AHI values from PSG, and Fig. 3 for
examples of estimated apnea-hypopnea events compared to PSG.

Subgroup analysis demonstrated excellent performance of the
Sleeptracker-AI Monitor in estimating sleep continuity measures
and classifying sleep stages among participants with OSA as well as
those without OSA, and participants with normal BMI as well as
those who are overweight or obese (Appendix Supplementary
Table A1-8).

The performance of the Sleeptracker-AIMonitor sensors at other
locations was similar to that of the PB-3 location (Appendix
Supplementary Table B1-8). For two of the locations (PB-3 and PB-
4), all N ¼ 102 Sleeptracker-AI Monitor recordings were available.
For three of the locations (TB-5, PA-1, and PA-2), only N ¼ 100
Sleeptracker-AI Monitor recordings were available. This was due to
missing sensor data for the remaining 2 study nights, during which
the corresponding Sleeptracker-AI Monitor device either lost po-
wer or connectivity or otherwise failed to collect and upload sensor
data for processing. Therefore, only N¼ 100 study nights were used
for the analysis for those locations.

4. Discussion

This study directly compared the Sleeptracker-AI Monitor
against PSG in estimating sleep continuity measures, sleep stages,
and apnea and hypopnea events among adult volunteers.

The Sleeptracker-AI Monitor provided similar estimates of sleep
continuity measures. The epoch-by-epoch agreement in estimating
Table 5
Accuracy, sensitivity, and specificity of Sleeptracker-AI Monitor in estimating
obstructive sleep apnea among 102 participants compared with polysomnography.

AHI �5 AHI �15

Accuracy (95% CI), % 87.3 (80.8, 93.7) 92.2 (86.9, 97.4)
Cohen's Kappa (95% CI) 0.723 (0.582,

0.864)
0.649 (0.414,
0.883)

Sensitivity (95% CI), % 85.7 (74.1, 97.3) 81.8 (59.0, 100.0)
Specificity (95% CI), % 88.1 (80.3, 95.8) 93.4 (88.3, 98.5)
Positive likelihood ratio (LRþ) (95% CI) 7.18 (3.69, 14.0) 12.4 (5.44, 28.3)
Negative likelihood ratio (LR-) (95% CI) 0.162 (0.072,

0.368)
0.195 (0.055,
0.685)
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sleep stages was high, with a 4-class accuracy of 0.790 and Cohen's
kappa of 0.676. The performance of the Sleeptracker-AI Monitor in
estimating OSA (AHI �5) was excellent, with a sensitivity of 85.7%,
and a positive likelihood ratio (LRþ) of 7.18 when compared to PSG.
It meets both the sensitivity and LRþ criteria (a sensitivity �82.5%
and a LRþ � 5) set for out-of-center testing devices for use in
confirming OSA (AHI �5) among patients with a high pretest
probability [10]. We conclude that the Sleeptracker-AI Monitor is a
valid device in assessing sleep continuity measures and sleep ar-
chitecture. It may also serve as a reliable tool for OSA screening.

Sleep is essential to health [11]. Buysse defines sleep health as a
multidimensional pattern of sleep-wakefulness, adapted to indi-
vidual, social, and environmental demands, that promotes physical
and mental well-being [12]. To date, conventional in-lab PSG study
remains the gold standard for evaluating sleep quality and diag-
nosing sleep disordered breathing. However, the high cost and level
of expertise needed in performing and interpreting PSG prevent it
from routine implementation in the general population for sleep
health evaluation. In addition, good sleep health goes beyond the
absence of sleep disorders, or a single sleep measure such as sleep
duration. Buysse's perspective on good sleep health highlights the
following dimensions of sleep: subjective satisfaction, appropriate
timing, adequate duration, high efficiency, and sustained alertness
during waking hours [12]. Thanks to rapid advances in artificial
intelligence (AI), particularly machine learning algorithms, AI-
based consumer home sleep monitoring devices have become
easily accessible to the general population, allowing comprehen-
sive and longitudinal sleep monitoring with automated output of
sleep continuity and architecture measures [1,2]. Validation studies
assessing the performance of such consumer home sleep moni-
toring devices against PSG are critical for interpreting automated
output of sleep measures.

The Sleeptracker-AI Monitor is one of the few under-mattress
sleep monitoring devices. Previously, limited validation studies
have been conducted for under-mattress sleep devices among a
small number of participants [13,14]. The conclusions from those
studies were inconsistent. Tuominen et al. [13] compared an under-
mattress Ballistocardiograph Beddit Sleep Tracker with PSG among
10 adults between age 18 to 30 with a BMI less than 30. The study
showed poor correlation between the two devices in estimating
sleep continuity measures and extremely poor agreement in sleep
stage classification with a Cohen's kappa less than 0.1. Thus, the
authors concluded that the Beddit Sleep Tracker is not a valid de-
vice to monitor sleep. Nagatomo et al. [14] compared another
under-mattress sensor, the Nemuri SCAN against PSG among 11
critically ill patients in the intensive care unit. The accuracy,
sensitivity, and specificity of patients' sleep between the Nemuri
SCAN and PSG were 68%, 90%, and 39%. The poor specificity of the
Nemuri SCAN was attributed by the authors to its inability to
identify immobile wakefulness, which is often observed in critically
ill patients.



Fig. 4. Apnea-Hypopnea Index values (log scale) estimated by the Sleeptracker-AI Monitor compared to those from PSG, with regions where the resulting OSA categories (none,
mild, moderate, severe) agree shaded.
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Our study showed excellent performance of the Sleeptracker-AI
Monitor in estimating sleep continuitymeasures and demonstrated
sleep staging accuracy comparable to interrater reliability among
PSG scorers. In 2013, the AASM published a study reporting that
interscorer agreement for sleep stages averaged 82.6% [15]. The
excellent performance of the Sleeptracker-AI Monitor, with accu-
racy (percent agreement with PSG) of 79.0% could be due to ad-
vances in technology. The Sleeptracker-AI Monitor uses highly
sensitive piezo-electric sensors that register forces through the
mattress, including those from body movement, respiratory effort,
heartbeats, and snoring vibration. The piezo-electric signals are
processed using digital signal processing and machine learning
algorithms to automatically produce sleep estimates.

In patients with a high pretest probability of having OSA, the
criteria for out-of-center testing devices to be used in diagnosing
OSA are a LRþ � 5 and a minimum sensitivity of 82.5% coinciding
with a PSG-generated AHI �5 [10,16]. The performance of
Sleeptracker-AIMonitor in estimating OSAmeets the above criteria,
although participants in this study were volunteers from the gen-
eral population of adults. The performance of the Sleeptracker-AI
Monitor in estimating OSA (an AHI �5) was also comparable to
the Withings Sleep Analyzer [17]. In a recent validation study
assessing the performance of the Withings Sleep Analyzer against
PSG in detecting OSA among 118 patients with suspected OSA, the
accuracy, sensitivity, and specificity for moderate-to-severe OSA
(an AHI �15) were 92.6%, 88.0%, 88.6% respectively compared to
26
PSG [17]. Note that in the Sleeptracker-AI study only 11 of the 102
subjects had AHI �15 and in the Withings study only 12 of the 118
subjects had AHI <5. Another mattress-based solution used
capacity-coupled ECG and bioimpedance sensors [18] to predict
OSA, though in this case on top of the mattress. In that study, the
accuracy, sensitivity, and specificity for moderate-to-severe OSA
(AHI �15) on a dataset of 36 test recordings of suspected OSA pa-
tients were 61.1%, 53.9%, and 80.0%, respectively compared to PSG
[18].

There are several strengths to this study. First, this is one of the
first studies investigating under-mattress homemonitoring devices
in estimating OSA, and it demonstrates excellent performance.
Secondly, adults from the general public (weight <400 lbs and
ability to undergo an unattended sleep study) were included, which
improves the generalizability of the study findings. Thirdly, as an
advantage of an under-mattress sleepmonitoring device, datawere
collected passively with no subject interaction needed and objec-
tive sleep estimates were produced automatically.

Limitations of this study should be acknowledged. First, the
current study was conducted in a sleep laboratory, which pre-
placed the Sleeptracker-AI sensor under the mattress. This may
not reflect a real-world setting with possible misplacement of the
sensor. But note that several sensor placements were tested in the
general areas under the pillow regionwith consistent performance,
which should mitigate this situation. Second, current validity re-
sults may not hold if the algorithm for sleep parameter and
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architecture estimation is updated. However, upgrades of algo-
rithms typically improve the performance of devices. Thirdly, this
study is based on a single overnight recording, which does not
allow the examination of the within-subject reliability. Collection
of longitudinal data of subjects may allow investigation of the as-
sociation of sleep and individuals’ long-term health. Lastly, each
participant slept on a queen-sized bed for this study. The influence
of having a bed partner and the performance of simultaneously
tracking two users sleeping on the same bed are currently being
studied in the home; however, sleep laboratories do not typically
study two patients at the same time in a single bed.

5. Conclusion

To conclude, the Sleeptracker-AI Monitor is a valid consumer
home sleep monitoring device for assessing sleep continuity
measures and sleep architecture. It may also serve as a reliable tool
for sleep health evaluation and OSA screening in clinical practice.
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