

Evaluation of Sleep-Related Respiratory Events in a Continuous Large U.S. Sample by Home-Based Under-Mattress Monitoring Devices

Clete Kushida*¹, Andrew Cotton-Clay*², Susan Baron², Laura Fava², Venkat Easwar², Arthur Kinsolving², Philippe Kahn², Jennifer Zitser Koren¹, Anil Rama³, Feihong Ding¹

¹Division of Sleep Medicine, Stanford University, Stanford, California, USA

²Fullpower Technologies, Inc. Santa Cruz, California, USA

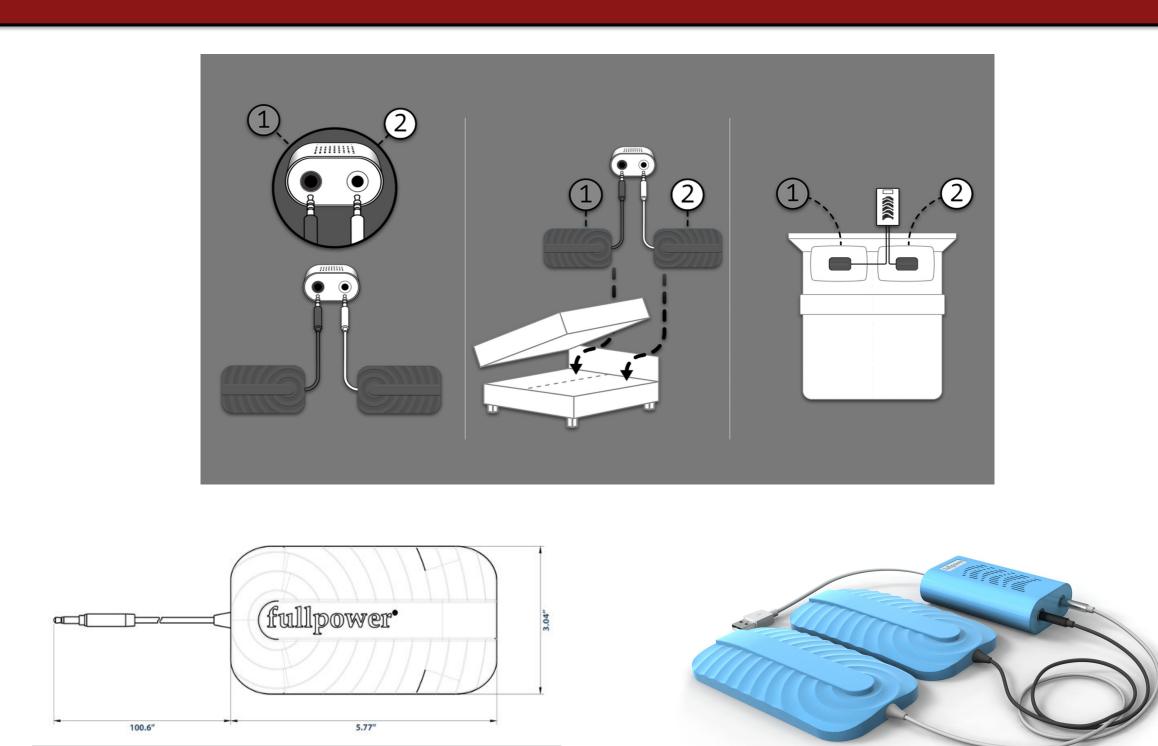
³The Permanente Medical Group, San Jose, California, USA

*Contributed equally to this work

Introduction

Population studies have estimated the prevalence of sleep-related respiratory events characteristic of obstructive sleep apnea (OSA) and reported night-to-night variability in OSA severity, but these have been constrained by the inability to obtain continuous nightly data on a large scale. The current study is the largest to date for the evaluation of the prevalence and night-to-night variability of these events.

Methods


Sleep-disordered breathing was analyzed by a commercially available home monitoring device (Sleeptracker-Al[®] Monitor, Fullpower Technologies Inc., California, USA). The device passively monitors sleep using piezoelectric sensors. Validated sleep and respiratory parameters were derived from device data. The de-identified data were analyzed, following review and exemption of the study (#57681) from Stanford University IRB. Data were reviewed from 2021-04-01 to 2022-03-31, in 76,769 individuals with 14,296,394 recorded nights. Individuals with at least 300 nights of recordings were included in the analytic dataset.

Met Inclusion Criteria

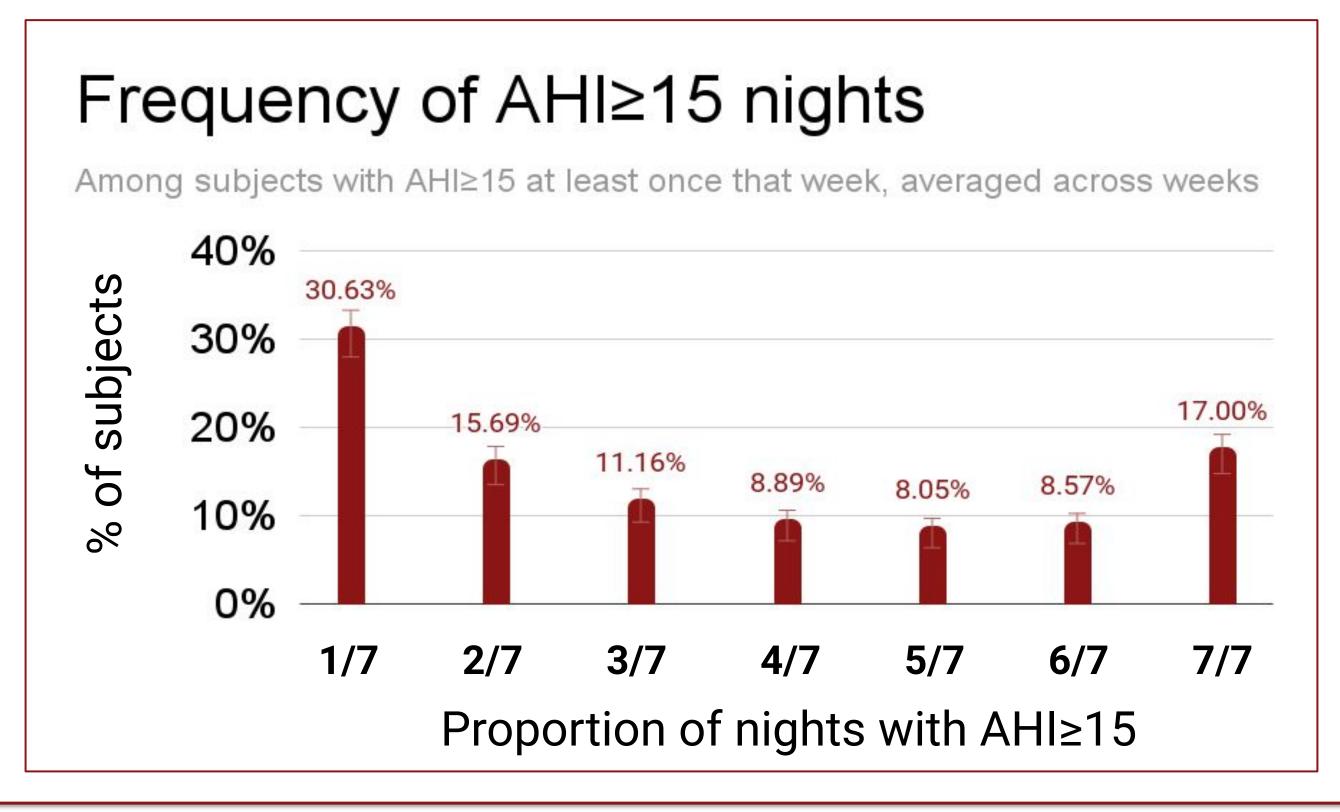
18,252 Participants 8,592 Men, 49.4 ± 13.5 years 7,336 Women, 48.9±13.1 years 2,324 Unspecified Gender, 49.9 ± 14.5 years

5,846,745 Recorded Nights

Device Setup

Results

Averaged across pairs of consecutive nights, test-retest for OSA severity showed the following results for first-night prevalence and second-night agreement percentage [with confidence intervals]:


OSA Severity	1 st Night Prevalence	2 nd Night Agreement
Mild	16.6% [16.0, 17.2]	53.1% [51.1, 55.2]
Moderate	4.3% [3.9, 4.6]	44.6% [40.6, 48.7]
Severe	1.8% [1.6. 2.0]	63.2% [56.9. 69.2]

Second-night agreement is the percentage of those with the given OSA severity on the 1st night who had the same severity on the 2nd night. These degrees of agreement are consistent with those previously reported.

Averaged across weeks, 12.4% [11.7, 13.0] of individuals analyzed met severity criteria for moderate-to-severe OSA (AHI≥15) at least one night out of seven, and we found that the following proportions of such individuals experienced AHI≥15 per given number of nights:

Number of Nights	Proportion of Participants with AHI≥15	
One	30.6% [28.1, 33.3]	
Two	15.6% [13.7, 17.8]	
Three	11.1% [9.5, 13.1]	
Four	8.9% [7.4, 10.6]	
Five	8.0% [6.6, 9.7]	
Six	8.5% [7.1, 10.3]	
Seven	17.0% [15.0,19.2]	

Each confidence interval excludes 0%, rejecting the null hypothesis of no AHI variability.

Conclusions

The use of a noninvasive in-home monitoring device enables the collection and analysis of sleep and respiratory data on a continuous nightly basis. The prevalence of and variability in sleep-related respiratory events have not been studied in this large of a scale, underscoring the importance of more frequent monitoring in accurately diagnosing OSA and its severity.

Ding F, Cotton-Clay A, Fava L, Easwar V, Kinsolving A, Kahn P, Rama A, Kushida C. Polysomnographic validation of an under-mattress monitoring device in estimating sleep architecture and obstructive sleep apnea in adults. Sleep Med. 2022 Apr 22;96:20-27. doi: 10.1016/j.sleep.2022.04.010. Epub ahead of print. PMID: 35576830.